
AD-AI32 863 MORE RESULTS ON THE CONVERGENCE OF ITERATIVE METHODS 1/1
FOR THE STMMETRIC LI.. (U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER J PANG AUG 83 MRC-TSR-2552

UNCLASSIFIED DAAG29-80-C 0041 FIG 12/ N

IEND

ME



L.13.2

1.8

1_.25 I 1.4± Q~l .

MICROCOPY RESOLUTION TEST CHART

NATIONAL *UICAU OF STANDARDS -. 963- A



MRC Technical Summary Report #2552

MORE RESULTS ON THE CONVERGENCE OF
ITERATIVE METHODS FOR THE SYMMETRIC

LINEAR COMPLEMENTARITY PROBLEM

Jong-Shi Pang

Mathematics Research Center

University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

Aiiti:;t 1983

(Received June 14, 1983)

DTc
Approved for public release ( .I W

C FILE COPY ,,Distribution unlimited SEPA 1 i

Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

~ 0922 141
....- -- i ii i i 

I

4 t . . - . . - ... .' I , ° ' i . . -



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

MORE RESULTS ON THE CONVERGENCE OF ITERATIVE METHODS

FOR THE SYMMETRIC LINEAR COMPLEMENTARITY PROBLEM 1'12

Jong-Shi Pang

Technical Summary Report #2552
August 1983

ABSTRACT

In an earlier paper, the author has given some necessary and sufficient

conditions for the convergence of iterative methods for solving the linear

complementarity problem. These conditions may be viewed as global in the

sense that they apply to the methods regardless of the constant vector in the

linear complementarity problem. More precisely, the conditions characterize a

certain class of matrices for which the iterative methods will converge, in a

certain sense, to a solution of the linear complementarity problem for all

constant vectors. In this paper, we improve on our previous results and

establish necessary and sufficient conditions for the convergence of iterative

methods for solving each individual linear complementarity problem with a

fixed constant vector. Unlike t..e earlier paper, our present analysis applies

only to the symmetric linear complementarity problem. Various applications to

a strictly convex quadratic program are also given.
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SIGNIFICANCE AND EXPLANATION

Iterative methods have been found very useful for solving large-scale

linear complementarity and quadratic programming problems. There are many

conditions proven to be sufficient for such methods to converge. However,

there are very few conditions that are known to be necessary for

convergence. Necessary conditions are useful because they identify the

underlying limitation of the methods. In an earlier paper, we have been able

to derive some necessary and sufficient conditions for the convergence of a

large class of iterative methods. In the present paper, we improve on our

earlier results and establish among other things, the convergence of many

iterative methods under the weakest possible conditions.
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MORE RESULTS ON THE CONVERGENCE OF ITERATIVE METHODS

FOR THE SYMMETRIC LINEAR COMPLEMENTARITY PROBLEM '2

Jong-Shi Pang

1. INTRODUCTION

In an earlier paper (Ref. 1), we have established some necessary and

sufficient conditions for the convergence of iterative methods for solving the

linear complementarity problem. These conditions may be viewed as global in

the sense that they apply to the methods regardless of the constant vector in

the linear complementarity problem (LCP). Specifically, consider the LCP

(q,M)."

q+ Mx > 0, x > 0 and xT(q+Mx) = 0

where q e R and M e Rnx n  are given and x eRn . Let (BC) be aQ-

splitting of the matrix M, i.e. M = B+C and B is a Q-matrix (the

LCP(q,B) has a solution of all vectors q). Let E be a nonnegative diagonal

matrix with Eui < 1. Define the point-to-set algorithmic map A as

follows: for all vectors x,

A(x) - solution set of the LCP(q+Cx, B, Ex)

The latter LCP(r,B,s) is to find y so that

r+By > 0, y > s and (y-s)T (r+By) - 0

Obviously, under the translation of variables x = y-s, the LCP(r,B,s) can

be converted into the LCP(r+Bs,B). Since B is a Q-matrix, the set A(x) is

1This research was based on work supported by the National Science Foundation
under Grant No. ECS-8114571 and was completed while the author was visiting
the Mathematics Research Center at the University of Wisconsin-Madison.

2The author gratefully acknowledges several stimulating conversations with
Professor Olvi Mangasarian.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



nonempty for all vectors x. Moreover, a vector x* solves the LCP(q,M) if

and only if it is a fixed point of the map A, i.e. x* e A(x*).

Given the diagonal matrix E and the Q-splitting (B,C) of the matrix

0
M, we define an iterative scheme for solving the LCP(q,M): Let x > 0 be

k
an arbitrary nonnegative vector. In general, given x > 0 (k>0), let

xk+1 be any vector in the set A(x k).

If B is a P-matrix, then the set A(x) is a singleton for all x. In

this case, each x k +  will be uniquely defined.

As noted in the earlier papers (Refs. 1 and 2), the above fundamental

scheme provides a unifying framework for the study of many well-known

iterative methods for solving the LCP(q,M). In Ref. 1, necessary and

sufficient conditions on the matrix M have been given so that for all

0 xk
vectors q and all starting vectors x > 0, each sequence {x } generated

by the basic iterative scheme will "converge" to some solution of the

LCP(q,M). The precise characterization of convergence is dependent on the

notion of convergence involved, on whether M is symmetric and on the

additional property imposed on the splitting (B,C).

A key feature of the analysis in Ref. I is that the characterization

applies to convergence for all constant vectors q. For all practical

purposes, it would be of interest to obtain some characterization of

convergence for each individual q. A major objective of this paper is to

derive some necessary and sufficient conditions on both M and q so that

the basic iterative scheme defined above will "converge" (to some solution of

0
the LCP(q,M)) for all initial vectors x > 0. The notion of convergence is a

rather delicate one. As it is already evident from the results in Ref. 1, the

kind of convergence that one can characterize depends rather crucially on the

assumed properties of the matrix M.

-2-
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There are two main characterizations obtained (Theorems 2.1 and 3.1).

Both require that the matrix M be symmetric. The symmetry of M seems

rather indispensable for the kind of characterization sought after in this

paper. This is because in the asymmetric case, the analysis employed here

breaks down. There, a typical argument for convergence is contraction of the

iterates in which the role played by q seems quite minimal. As a result, it

might be necessary to search for a different kind of characterization in the

asymmetric case.

In addition to the two Theorems 2.1 and 3.1, several characterizations

for the convergence of various dual iterative methods for solving a strictly

convex quadratic program are derived. All the characterizations are obtained

in terms of some very minimal requirements on the original problem being

solved. For example, in the case of a strictly convex quadratic program, the

convergence of the sequence of primal vectors induced by the dual iterative

methods is characterized by the feasibility (or equivalently, solvability) of

the primal program under absolutely no other conditions.

Closely related to the LCP(q,M) is the quadratic program
T IT

min f(x) := q x + I x TMx.
x>O

If M is symmetric, then a vector x* solves the LCP(q,M) if and only if it

is a stationary point of the above program. The objective function f(x)

plays a crucial role in the analysis that follows.

We explain some matrix notations used in the paper. If A is an n x m

matrix, a and 8 are subsets of {1,...,n) and (1,...,m} respectively,

by A we denote the submatrix of A whose rows and columns are indexed by

a and 8 respectively. If a = {1,...,n), we denote by A. those columns

of A indexed by B. Similar definition applies to A

-3-
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2. THE NONDEGENERATE CASE

We divide our analysis into two cases, depending on whether the matrix

M is nondegenerate or positive semi-definite. Recall that Q matrix M is

nondegenerate if all its principal minors are nonzero. A well-known

characterization of nondegeneracy in linear complementarity theory is the

following (Ref. 3): N is nondegenerate if and only if the ICP(q,M) has a

finite number of solutions for all vectors q.

Before stating our main result for the nondegenerate case, we quote the

following lemma whose proof can be found in Ref. 1. The splitting (B,C) of

the matrix M is regular if B-C is positive definite.

Lemma 2.1. Let (B,C) be a regular splitting of the symmetric matrix K.

Then, for any nonnegative diagonal matrix E with Eui < I for all i and

for any nonnegative vector x,

f(x) - f(y) > _ (x-y)T(B-C)(x-y) 1 0

for each y e A(x). Moreover, f(x) = f(y) for some y e A(x) if and only

if x solves the LCP(q,M).

The following theorem is the main result if M is symmetric and non-

degenerate.

Theorem 2.1. Let M be a symmetric and nondegenerate matrix and let q be

an arbitrary vector. Let (B,C) be a regular Q-splitting of M. Let E be

a nonnegative diagonal matrix with Eul < I for all i. Then, the following

three statements are equivalent:

0 xk}
(A) For any initial vector x > 0, any sequence {x k satisfying

x k + 1 e (x k ) is bounded and thus has at least one accumulation point;

moreover, any such point solves the LCP(q,M);

(B) The quadratic function f(x) q Tx + . xTMx is bounded below for2

x >0.

-4-
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(C) For any initial vector x0 > 0, any sequence (x k} satisfying

x k + e A(x k) converges to a solution of the LCP(qM).

Proof. (A) ==> (B). Let x0 > 0. Use the given xO as the initial iterate,

generate a sequence {xk  with xk+ 1 e A(xk). By (A), some subsequence

converges to some solution x of the LCP(q,M). By Lemma 2.1, we have

f(x) f(x)

Since M is nondegenerate, the LCP(q,M) has a finite number of solutions.

Consequently, for any x0 > 0, f(x0 ) is bounded below by the minimum of the

quadratic function values f(x) generated by a finite set of x vectors.

Thus (B) follows.

(B) -> (C). Let {x k } be any sequence satisfying xk+ l e A(xk) with
0

x > 0. According to the proof of Theorem 4.1 in Ref. 1, it suffices to

establish two things: Mi) that the sequence {x k  is bounded and (ii) that

the entire sequence {x k } in fact converges. To prove (i), suppose that the

sequence {x k }  is unbounded. Then there exist a nonempty index set a and a
ki ki  ki

certain subsequence {x } such that {x I + - if J * a and (xj } is

bounded if J e (. Let B denote the complement of a.

By Lemma 2.1, the sequence (f(x k)} is non-increasing. Assumption (B)

implies that (f(xk ) is bounded below and therefore converges. By Lemma 2.1

again, we have

f(xk) - f(xk+l) > (xk xk+I)T(B-C)(xk-xk+l) ! 0 all k

Since B-C is positive definite, it follows that the sequence {x k-x k+ 1

converges to zero.

ki
Returning to the subsequence {x }, we have by definition of x ,

k -1 k
i i

q+Cx + Bx (2a)

ki Exi "

x >Ex (2b)

-5



k kI-IT k I k
(x -Ex (q+cx +Bx - .(2c)

k k -1
Ik_ k-i1Since {x }+ " for j e a and x-x + 0, it follows that {x

also tends to infinity as ki + m for j e a. We may write

k ki k i  ki1-

x -E x k (x -x ) + (I-E )xk

j iii j ii j

Since E < 1, it follows that

k i  ki

xj > E xk

for all ki large enough and all j e e. Hence, by complementarity, we

obtain (cf. (2a) - (2c))

0 =(q + Cx + Bx

(3)
ki k ki  ki

(q + C(x - x )) +Mx 0 ] + MQxB

which implies by the nondegeneracy of M,

kki k k-1 k ) ki
k -M -[(q + C(x - x )) +M xO

But this is a contradiction because the left-hand side in the above equation

is unbounded whereas the right-hand side is bounded. Consequently, the entire

sequence {xk I must be bounded. The boundedness of {x k ) and the proof of

Theorem 4.1 In Ref. 1 imply the following conclusion: The sequence {x k  has

at least one accumulation point and any such point solves the LCP(q,M). Since

k
the TPCP(q,M) has only a finite number of solutions, the sequence {x ) has a

finite number of accumulation points. Thus, by Ostrowski's Theorem which

k
states that a bounded sequence {y ) with a finite number of accumulation

points and satisfying lyk+1-ykI + 0 converges (Ref. 4, Theorem 28.1), the

sequence (xk}  indeed converges. This completes the proof of (B) .n> (C).

(C) => (A). This is obvious.

--6-m
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Among other things, Theorem 2.1 has shown that if M is symmetric and

nondegenerate, and if assumption (B) holds, then for any initial vector

x 0> , any sequence (x k I satisfying xk+ l e A(x) is bounded. This

statement remains valid if the nondegeneracy assumption of N is replaced by

the weaker assumption that the homogeneous LCP(O,M) has zero as the unique

solution. To see this, suppose that Ix I + . Then the normalized sequence

x k/Ix k1 has an accumulation point x which must be nonnegative and
ki k i

nonzero. let (x /Ix 1) be a subsequence converging to x. For each

ki, we have

ki - + Bx i i C( i  x i ) + iq+c +x -q+C -x )+x )0

The proof of (B) -> (C) shows that the sequence X - x i1 + 0. Thus,

dividing by Ixk I and passing the limit ki + O, we deduce that

t;>0 

Moreover, for each inden J, we have

k - I k k k-
0 (q + )+ x (x _I--j ki

k 1-1ki k k i k k -i k
(q + C(X xk) + Nm ) ((-E)x - Elx x l .

Dividing by Ix il2 and noting that X < 1, we obtain by passing the limit

ki +

x (X) 0 for all j

Thus x is a nonzero solution of the homogeneous LCP(O,). Consequently, if

the homogeneous LCP(O,M) has no nonzero solution, then the sequence x k

must be bounded.

-7-
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It is well-known from quadratic programming theory that if a quadratic

objective function is bounded below on a feasible region, then it achieves its

minimum there (see Refs. 5 & 6). In particular, assumption (B) implies that

the quadratic program (1) has a solution and so does the LCP(q,M). Thus, the

existence of a solution to the LCP(q,M) is implicit in condition (B).

Moreover, (B) holds if and only if the matrix M is copositive (i.e.

x > 0 ==> x TMx > 0) and the implication below holds:

T T[x > 0, xTMx - 0] => qx> ,

see Ref. 6 for a proof. In general, the existence of a solution to the

LCI(q,M) does not imply (B).

Two splittings that are particularly interesting are derived from

Mangasarian's iterative procedure (Ref. 7) and the block SOR iterative

method. Mangasarian's procedure leads to a splitting (B,C) of the form

B iK + (XW) ID, C - M - K - (w)- ID and -(1-X)I (4)

where A e (0,1], w > 0 and D is a positive definite diagonal matrix (see

Ref. 1). Specializing Theorem 2.1 to such a splitting, we obtain the

following characterization.

Corollary 2.1. Let N be a symmetric and nondegenerate matrix and q an

arbitrary vector. Let A e (0,1] and w > 0 be given scalars. Suppose that

the matrices K and D satisfy:

i) D is a positive definite diagonal matrix

(ii) the matrix K + (Xw) ID - M/2 is positive definite

(iii) K + (Xw)- ID is a Q-matrix.

Then the statements (A), (B) and (C) in Theorem 2.1 are equivalent for

Mangasarian's procedure.

Proof. It suffices to observe that the splitting (B,C) defined in (4) is

regular and Q under the given assumptions.

~-8-
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Using the same theorem due to Ostrowski, Mangasarian (Ref. 7) has proven

the convecgerve of the sequence of vectors generated by his iterative scheme

under the assumption that the matrix M is symmetric, nondegenerate as well

as copositive-plus. Note that copositivity is not a pre-stated assumption in

Corollary 2.1 (or Theorem 2.1); instead, it is part of the characterizing

condition for convergence (implied by condition (B)).

The block SOR-splitting is defined in the following way. Let the

matrix M be partitioned into submatrices (Mij) with each diagonal block

Mii being square. Let D, L and U be consisted of the diagonal, strictly

lower and upper triangular blocks of M respectively. Then the block SOR-

splitting (B,C) of M is given by

B = L + D/W and C = U + (1 - I/W)D

where w e (0,2) is a given scalar. See Ref. 1. The point SOR-splitting

corresponds to the case where each Mij is the (i,j) entry of M.

Corollary 2.2. Let M be a symmetric, nondegenerate matrix partitioned into

submatrices (Mij) with each diagonal submatrix Mi being positive

definite. Let q be an arbitrary vector and E any nonnegative diagonal
0

matrix with Eli < 1 all i. Then for all w e (0,2) and any x > 0, the

sequence {k I generated by the block SOR-splitting and the matrix E is

uniquely defined. Moreover, the statements (A), (B) and (C) in Theorem 2.1

are equivalent for the block SOR-splitting.

Proof. The fact that the sequence x k) is uniquely defined follows from the

positive definiteness of the matrix D which implies that B is a P-

matrix. The equivalence of (A), (B) and (C) follows from Theorem 2.1 and the

observation that the block SOR-splitting is in fact regular and Q under the

assumed properties (see the proof of Corollary 4.2 in Ref. 1).

-9-
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3. THE POSITIVE SEMI-DEFINITE CASE

The analog of Theorem 2.1 for a positive semi-definite M is the

following.

Theorem 3.1. Let M be a symmetric positive semi-definite matrix and let

q be an arbitrary vector. Let (B,C) be a regular Q-splitting of M. Let

E be a nonnegative diagonal matrix with Eui < I for all i. Then for any

initial vector x > 0, the sequence {x k generated by the splitting (B,C)

and the matrix E is uniquely defined. Moreover, the following three

statements are equivalent:
0 Mk

(D) For any initial vector x > 0, the sequence {Mx converges to some

vector Mx and x solves the LCP(q,M).

(B) Same as before.

(E) The LCP(q,M) has a solution.

Before proving the theorem, we should point out that statement (D) does

not assert even the boundedness of the sequence {x k). In particular, {xk )

could be unbounded. However, the sequence {Mx k  must converge and in fact

converges in a desirable manner.

Among the equivalence between the statements (D), (B) and (E), the only

non-trivial part that requires a detailed proof is the implication (B) (or

equivalently (E)) -> (D). The equivalence of (B) and (E) is well-known by

the symmetry and positive semi-definiteness of M. That (D) --> (E) is also

obvious. Condition (B) (or (E)) is further equivalent to the feasibility of

the LCP(q,M) which in turn is equivalent to the implication:

Iv > 0, MV - 0] ==> vTq > 0

The last implication is satisfied if condition (F) below holds:

(F) There exists a vector v such that q + Mv > 0.

By using the same argument as in Lemma 3 of Ref. 7, one can show that

.- 10-



condition (r) (under the assumed properties of M) implies that the sequence

k
{x I must be bounded and thus assertion (D) follows readily. However,

condition (F) is in general stronger than (B) or (E), even for symmetric

positive semi-definite M. As a result, the implication (B) => (D) requires

a separate proof. For this purpose, we need a few lemmas. The first lemma

concerns the accumulation point(s) of a sequence in the affine image of a

polyhedral set. The second lemma gives a straightforward property of a

positive semi-definite matrix. The third lemma is a consequence of the

second. Finally, the fourth lemma concerns the solution of an LCP with a

positive semi-definite matrix. Although the proof of each of these lemmas is

fairly easy, we want to state the lemmas explicitly because they all play an

important role in the proof of Theorem 3.1.

Lemma 3.1. Let S be a polyhedral set in Rn and A any m x n matrix.

k k
Then any accumulation point of a sequence {Ax I where {x I S must be of

the form Ax for some x e s.

Proof. This follows easily from the observation that the image AS is also a

polyhedral set (see Ref. 8) and is therefore closed.

Lemma 3.2. Let C be an n x n symmetric positive definite matrix and A

any m x n matrix. Then the sequence {ACA y kI converges to the vector

ACA y if and only if the sequence {A y I converges to A y.

Proof. It is obvious that if the sequence {A y ) converges to A y, then

the sequence {ACA y ) converges to hCA y. To prove the "only if" part,

assume that the sequence {ACA y I converges to ACA y. With no loss of

T k
generality, we may take y = 0. We first show that the sequence (A y ) is

bounded. Suppose not. Then A Ty k I -. The normalized sequence

(A Ty k/A Ty k has an accumulation point which nst be nonzero and of the form

T .
A y by Lemma 3.1. On the one hand, we have

-11-
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ACA Ty k /A Ty kI + 0

because the numerator tends to zero and the denominator tends to m. On the

T k Tyk T'
other hand, the sequence {ACA y k/A yk|} has ACA y as an accumulation

point. Thus, it follows that

T
ACA y = 0

which implies, by the positive definiteness of C,

TaA y = 0

which is a contradiction. Therefore, the sequence {AT y k  is bounded.

Again, by Lemma 3.1, any accumulation point of the sequence {AT y k  must be

of the form A Tu for some vector u. By the same argument just used above,

we can easily deduce ATu = 0. Consequently, the sequence {ATyk ) converges

to zero as desired.

Remark. According to Lenma 3.1, the sequence {ACAT y k I converges to some

vector of the form ACA y if and only if it in fact converges.

Lemma 3.3. Let M be a symmetric positive semi-definite matrix. Let a be

k
any index set. Then the sequence {M y ) converges to the vector m y if

a0L aau a

and only if the sequence NM. y 1 converges to m aya

k
Proof. It suffices to show the "only if" part. Suppose that {M y I con-

Go a
verges to M ay. Since M is symmetric positive semi-definite, we may

write M = LL T for some matrix L. Under this representation, we obtain

T TM1 =L (L ) and M. - L(L , )  .

k T k
Since Maa y = La.(La*) ya' it follows from Lemma 3.2 that the sequence

T k T- k -{(Lad yI converges to L) y because Maya + Maa. Consequently,

k T k T-May L(L )y L(L ) My as desired.a' a a' a '-aa

Lemma 3.4. Let M be a symmetric positive semi-definite matrix and let q be

an arbitrary vector. If x1  and x2  are two solutions of the LCP(q,M),

then Mx 1 = 2 .

-12-
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Proof. This is well-known in linear complementarity theory, see Ref. 9 e.g.

Proof of the implication (B) ==> (D) in Theorem 3.1. we first note that if

M is positive semi-definite and (B,C) is a regular splitting of M, then

B itself must be positive definite. To see this, let x @ 0 be any

vector. Then

0 < xTMx = xT(B+C)x and xT(B-C)x > 0

Adding the two inequalities gives xTBx > 0. Thus, the sequence {xk }  is

uniquely defined.

By the same argument used in the proof of Theorem 2. 1, we may deduce that
xk+1 k

the sequence {X - xk I converges to zero. We claim that the sequence

{Mx k  has at least one accumulation point. This is certainly true if {x k

is bounded. Suppose that {x k  is not bounded. Then there exist a nonempty
ki  ki

index set a and a subsequence {x I so that (x } + C if j e a and
ki j

(xj I is bounded if j e a. Let 0 be the complement of a. As in the

proof of Theorem 2.1, we may deduce (cf. (3))

ki ki-1 k k
M a + C(x -x ))a + Masx a

for all ki  large enough. The last equation shows that the sequence
ki  ki

{M x I is bounded. By Lemma 3.3, the sequence {M x ) has an
aa a01 a

accumulation point. Since
ki  ki  k

i+ M xi
Mx x a x

ki  ki}

and {x8 I is bounded, it follows that the sequence {Mx has an

accumulation point. Therefore, so does {Mx }.

-13-
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Let z be any accumulation point of the sequence Mxk ). Let {Mx i

be a subsequence converging to z. There exist a possibly empty index set a
t . k.i

and a subsequence {x of {( 1 so that {x. } + if j e a andLi

{x } is bounded if j e a. Let B be the complement of a. Then as

before, we have
Li ai1  i aB

M xa -[(q + C(x -x ) + x ] (5)

Li

for all t. large enough. Moreover, the sequence {M.axa i has an1 a0
1.A A

accumulation point which must be of the form M axa for some x > 0 by

i a

Lemma 3.1. with no loss of generality, we may assume that M x + M x •

Since the sequence {x is bounded, we may also assume with no loss of

generality that (x 'I converges to some vector x8 > 0. It then follows
B =

that z = Mx. We claim that x solves the LCP(q,M). We have already noted

that x > 0. Passing the limit t. + in (5), we obtain

(q + Mx) =0

because x - x + 0. Moreover, for each lif we have

L.-1 Li

0 < (q + cx + Bx

£i-1 Li £I
(q + C x - x i+ x )

and
Li T £i-1 £i £

(x ) (q + C(x - x ) + Mx ) = 0

Li A Li A

Passing the limit Ii + 0 and noting that x + x and Mx + Mx, we

conclude that

(q + Mx) > 0 and x (q + Mx) =0

-14-
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Consequently, x solves the LCP(q,M).

Summarizing, we have proven that if z is any accumulation point of the

kA
sequence {Mx 1, then there exists a solution x of the LCP(q,M) such that

AA
z = Mx. By lemma 3.4, there is only one value for such Mx. Consequently,

k*A
the sequence {Mx I converges to Mx where x solves the LCP(q,M). This

establishes the theorem.

Remark. Although any accumulation point of the sequence {Mx must be of

the form My for some vector y 1 0, it is generally not true that any

such y will automatically solve the ICP(q,M). What is true is the existence

of at least one such y which is a desired solution. This fact is also

related to the reason why it is necessary to follow the line of argument used

in the latter part of the above proof.

-15-
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4. APPLICATIONS TO A STRICTLY CONVEX QUADRATIC PROGRAM.

Theorem 3.1 can certainly be specialized to the two important splittings

discussed at the end of Section 2. Instead of giving these routine special-

izations, we give two applications of Theorem 3.1 to the case of a strictly

convex program. Consider the quadratic program

T 1 T
minimize c x + x Dx subject to Ax > b (6)2W

where the matrix D is symmetric positive definite. The Karush-Kuhn-Tucker

conditions may be stated as
T

0 = c + Dx - A y (7a)

T
v = -b + Ax > 0, y > 0 and v y - 0 . (7b)

Eliminating the x-variables using (7a) and substituting into (7b), we obtain

the LCP
A-1c -ATy T

v = -(b + AD c) + AD A y > 0, y > 0 and v y -0 8)

where the matrix AD-1A T  is symmetric positive semi-definite. Specializing

Theorem 3.1 to the above LCP, we obtain

Corollary 4.1. Let D be a symmetric positive definite matrix. Let (B,C)

be any Q-regular splitting of the matrix AD-1 A T . Let E be any nonnegative

diagonal matrix E with E i < I for all i. For any initial y > 0, the

(uniquely dfafined) sequence {y k} generated by the splitting (B,C) and the

matrix E induces a corresponding sequence of iterates Ixk ) via (7a);

namely

k -1 T kx = D (-c + A y ) for all k

The following two statements are equivalent:
0k

(D)' For any y > 0, the induced sequence {x k converges to the unique

solution of the program (6)

(G) The program (6) is feasible, or equivalently, solvable.

-16-
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Proof. We first observe that the program (6) is feasible if and only if the

LCP(8) is so. Thus, according to Theorem 3.1, statement (G) is equivalent to
0 -~

the fact that for any initial y 0 0, the sequence {AD- A Ty k  converges to

-1 T
some vector AD A y and y solves the LCP(8). To see that this latter

statement is equivalent to (D)', suppose that {AD-I A Ty k I converges to

AD A y where y solves the LCP(B). By Lemma 3.2, the sequence (A y

converges to A y. Thus the induced sequence {x } converges to the vector

- I TA
x D (-c+Ay) , (9)

It is obvious that x is the unique solution of the program (6). Conversely,

suppose that the sequence {x k I which is induced by (y k for some y > 0

converges to the unique solution x of the program (6). Then there exists a

vector y solving the ICP(8) and satisfying (9). It then follows that the

T k TA. -1 Tk ~ 1T^
sequence {A y ) converges to A y. Therefore, AD A y + AD A y as

desired. Consequently, the equivalence of (D)' and (G) follows.

Remark. It is in general, not true that if x solves the program (6) and y

is any vector satisfying (9), then y solves the LCP(8). Only a vector of

multipliers y corresponding to the constraints of (6) will both satisfy (9)

and solve (8).

The significance of Corollary 4.1 is the following. A useful way to

solve the quadratic program (6) by iterative methods is to apply them to the

corresponding LCP(8). Under a constraint qualification of the Slater type,

one can show that the sequence of vectors {y k} generated is bounded and thus

has at least one accumulation point. Moreover, any such point solves the

LCP(8) and therefore yields the unique solution to (6) by means of the

relation (9). See Ref. 10 e.g. Typically the fact that any accumulation

point of the sequence generated solves the LCP is an inherent property of the

iterative methods. The proof of the boundedness of the sequence usually

-17-



requires a constraint qualification without which the existence of at least

one such point is no longer guaranteed. Ref. 11 contains a somewhat more

detailed discussion on this important point. Now, Corollary 4.1 says that

under absolutely no constraint qualification at all, the very minimal

requirement that the program (6) be feasible (or equivalently, solvable)

characterizes the convergence of the induced sequence {xk I to the unique

global minimum point of (6). Although, not even the boundedness of the

sequence {y k is asserted, the convergence of the induced sequence (x k

should have served all desired practical purposes.

In a similar way, the significance of Theorem 3.1 is also easily seen.

Indeed, as we have mentioned earlier, condition (F) which is a Slater

constraint qualification implies conclusion (D). Theorem 3.1 says that the

very minimal requirement that the LCP(q,M) be feasible (or equivalently,

solvable) characterizes the convergence of the sequence of vectors

K{ k
{w q+Mx } to a desired solution w = q+Mx of the LCP(q,M). Again, the

characterization requires no such constraint qualification as (F).

There is yet another approach to apply an iterative method for solving

the strictly convex quadratic program (6). This approach was first proposed

by Han and Mangasariari (Ref. 12) as a special case of their exact penalty

function theory for general nonlinear programs. In what follows, we describe

this approach from a different point of view.

The prime motivation for this alternative formulation has to do with the

fact that the LCP(8) involves the inverse of the matrix D. For large-scale

applications with sparse data, it is not very desirable to invert D because

the inversion can easily destroy the sparsity structure. As a result, one is

led to investigate the formulation (7) from which (8) was derived. However,

(7) is defined by the matrix

-18-
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which contains a zero diagonal block. This zero diagonal block prohibits the

application of say, the point SOR-method. As a remedy for this, one observes

that (7) is equivalent to

0 = c + Dx - Ty

v = -b + Ax -YA(c+Dx-ATy)> 0, y > 0 and vTy M 0

which can be rewritten as

0 = c + Dx - A y (7a)

ATy T
v = -b - yAc - A(yD-I)x + YAA > , y > 0 and v y - 0 (7b)'

where y is some positive scalar. If A has no vanishing rows, the matrix

YAA T has positive diagonal entries. Thus the point SOR-method is

applicable. However, the matrix

T

A(yD-I) YAAT

is nonsymmetric and most likely, not even positive semi-definite. One way to

symmetrize the above matrix is to multiply the expression (7a) by the matrix

yB-I which will be nonsingular (in fact, positive definite) if y > 1/p

where p is the least eigenvalue of the positive definite matrix D. Thus,

if y > I/p, problem (7) is equivalent to

0 - (yD-I)c + (YD-I)Dx - (YD-I)A Ty (10a)

T Tv = -b -YAc - A(D-I)x + AA y > 0 and v y . (10b)

This last formulation (10) is precisely the one to which Han and Mangasarian

(Ref. 12) proposed the application of the point SOR-method. They have shown

-19-
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that for Y > I/p, the matrix

( (YD-I)D -(yD-I)AT

-A(YD-I) YAA T

is symmetric positive semi-definite and that if y > I/p, the problem (10)

has a solution (x(y), y(y)) such that x(y) - x* where x* is the unique

solution of the program (6), provided that the program (6) is feasible. This

latter conclusion also follows easily from our derivation of the problem

(10). we remark that if y > 1/p and A has linearly independent rows, then

the matrix M in (11) is positive definite.

Concerning the convergence of the point SOR-method, Han and Mangasarian

(Ref. 12) have shown that if either (i) the matrix A has no vanishing rows

and has linearly independent columns, and there exists a vector x with

Ax > b, or (ii) the matrix A has linearly independent rows, then for

Y > I/p, for any relaxation parameter w e (0,2) and any initial vector

(x0,y 0) with x0 arbitrary and y0 > 0, the sequence (x k,y ) generated is

bounded and thus has at least one accumulation point. Moreover, any such

point (x,y) solves (10). In fact, x is the unique optimum solution of (6)

k
to which the sequence (x ) must converge.

The above convergence result of Han and Mangasarian was proven under sme

linear independence property of the matrix A and in at least one instance,

under a constraint qualification as well. The corollary below shows that

under absolutely no such restriction on A and no constraint qualification,

k
the same convergence of the sequence (x I can be asserted. However, an in

the two previous results, (Theorem 3.1 and Corollary 4.1), only the

convergence of the sequence {A Ty k, and not the boundedness of {y k, can

be proved. Again, for all practical purposes, it is the convergence of the

sequence {xk I that is of interest.
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Corollary 4.2. Let D be a symmetric positive definite matrix with least

eigenvalue p > 0. let A be any matrix with no vanishing rows. Fix

0 0 0y > 1/p. Then for any w e (0,2) and any initial vector (x ,y ) with x

arbitrary and y0 > 0, the sequence of iterates {(xk,yk )) generated by the

point BOR-method is uniquely defined. Moreover, the following two statements

are equivalent:

(H) For any W e (0,2) and any initial vector (x0,y 0) with x0 arbitrary

and y 0 0, the sequence {(x k,yk )) is such that {xk I converges to the

unique solution x* of the program (6) and that (A y k converges to some

vector AT where (x*,y*) solves the problem (10),

(G) same as before.

Proof. Although the formulation (10) is not exactly the one of a standard

LCP, the same analysis of Theorem 3.1 allows one to conclude the equivalence

of the following two statements:

(G)' The problem (10) has a solution.

0 0 0(H)' For any w e (0,2) and any initial vector (x ,y ) with x arbitrary

and y0 1 0, the sequence {Mzk I where M is given by (11) and zk

(xi k ) is the sequence generated by the point SOR-method, converges to some

vector Hz, where z - (x,y), and z solves (10).

Noting that the matrix YD-I is nonsingular if y > I/p, we deduce that

problem (10) has a solution if and only if (7), or equivalently (6), has

one. Consequently, statements (G) and (G)' are equivalent. Noting that

NZ (12)
Axk + YA(Dxk _ AT yk ))

we may easily deduce that (H) -> (H)'. Conversely, suppose that Hz + Hz4

and z - (x,y) solves (10). Since yD-I is nonsingular, it follows from the
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expression (12) that

Dx -Ay +Dx-Ay and Ax + . (13)

We claim that the sequence {x k  is bounded. Suppose not. Then Ix kI +

and the normalized sequence (x k/Ix k has a nonzero accumulation point u.

With no loss of generality, we may assume that u is the limit of the entire

sequence {xk /Ix k. It follows from (13) that

(Dx - ATyk)/Ixk[ +0 and Au = 0

Since {Dx k/Ix kI is itself converging to Du, the sequence {AT y k/Ix kI)

must converge and by Lemma 3.1, it must converge to A Tv for some vector

v. Thus, we have

Du - ATV n0

Pre-multiplying the above identity by uT and using the fact that Au - 0,

we deduce uTDu = 0 which is impossible because D is positive definite

and u is nonzero. Consequently, the sequence {x k  is bounded. Let x be
*k i

an accumulation point of {xk I. We claim that x = x. Indeed, let {x I be

a subsequence converging to x. Since the sequence {Dx -A y k is
k

Ti
convergent, it follows that the subsequence {A y i must itself be

converging and by Lemma 3.1, to a vector of the form ATv. Thus, we have

T A T^Dx-Av-Dx-Ay and Ax-Ax

or equivalently.

which implies, by the positive definiteness of D,

x -x

Consequently, the sequence {x k  converges to x and the sequence {AT y

T
converges to A y. Since (x,y) solves (10), it follows that x is the

unique solution of the quadratic program (6). Therefore, assertion (H)

follows. This completes the proof of the corollary.

-22-
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Remark. At che point where we have established the boundedness of the

sequence (x k , we cannot use the Han and Mangasarian convergence result to

conclude that x k ) converges to the unique solution of (6). This is because

for the Han and Mangasarian result to be applicable, we need to know the

boundedness of the sequence {yk I as well. However, the boundedness of

{y k is generally not guaranteed without the linear independence property of

the matrix A.

-23-
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5. ON LAGRANGIAN RELAXATION

In a recent report (Ref. 13), Cottle and Duvall have described a

Lagrangian relaxation algorithm for a constrained matrix problem which is

formulated as a strictly convex separable quadratic program. They proved the

convergence of their algorithm under a strong consistency condition which is a

constraint qualification of the Slater type. In what follows, we use the

previous analysis to derive a convergence result for the Lagrangian relaxation

method inder no such constraint qualification. As a matter of fact, we shall

treat the following more general strictly convex quadratic program
1 T T(4

minimize xTDx + c x subject to Ax > b and x e X (14)
2MI

where the matrix D is symmetric positive definite and the set X is

polyhedral:

X {x e Rn :Fx > f)

As with the previous problem (6), we have included only inequality constraints

in the program (14). This is done for the sake of consistencyl the same

analysis is equally applicable to programs with both inequality and *qualit-

constraints (such as the constrained matrix problem in Ref. 13).

The Lagrangian dual function of the program (14) is

d(y) - m - x Dx + c x + y (b - A Ix) (1a)xex2

and the dual of (14) can be defined as

max d(y) • (15b)
y>O

The Lagrangian relaxation approach for solving the program (14) may be

described as follows. Let

-24-
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0 0 0

be a partition of the rows of the matrix A. Let y0 . (Y1'"''''N) be an

arbitrary nonnegative vector partitioned in accordance with A. In general,

lot y (yI' ..yN) > 0 be given. To obtain yk+ k+1 k+1

solve N quadratic subprograms consecutively for a - 1,...,N:

I T  k+ T k T
minimize 2 xTDx + (( 6 (YB

(16)

subject to Aax > ba and x e x

k+ 1
and let yk > 0 denote the vector of Lagrange multipliers for the

constraints (A X I ba).

In order for the above Lagrangian relaxation method to be practically

useful, it is important that the partitioning of the matrix A should be such

that each subproblem (16)a is very easy to solve. This is indeed the case for

the constrained matrix problem, see Ref. 13.

As noted by Cottle and Duvall (Ref. 13), the above Lagrangian relaxation

algorithm can be interpreted as a block cyclic ascent method applied to the
k+ 1

dual program (15). Indeed, it is easy to see that the vector ya solves

the dual subprogram
k+lk

max d({y k+ )00 ya l y I~amax lyB 18a a' {B}B>a
yaoa

which is obtained from (15b) by fixing all variables except those of ya"

In order to state our convergence result for the Lagrangian relaxation

method, we give a different interpretation of the method in the context of

matrix splittings. To simolify the notations, we take N = 2 and consider

the matrix A partitioned into two sets of rows Al and A2. Then, using

the system of linear inequalities which define the set X, we may state the

Karush-Kuhn-Tucker conditions of the program (14) as:

-25-
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o = c + Dx - ATy1 - ATy - F T z x unrestricted (17a)

wI -b I +Ax >0 , Y >O0 , wT 1 O 1b1 1 2

w2 =-b 2 + A2 x > 0 , > 0 , T

= = w 2 y 2  0 (17c)

v -f + Fx > 0 z > 0 v T z = 0 (17d)

Solving for x in (17a) and substituting into (17b) - (17d), we obtain an

LCP(q,M) where

q b2 A2 -1c n A DI1( T FT )

and M 2  (A A 2  (18)

f F F

It is then easy to see that given yk (yy 2 ) > 0 and z k  0, the next
k+1 k+2 k+=

iterate y = (y1  ,Y2  ) produced by the Lagrangian relaxation algorithm

can also be obtained in the following way:

(i) Solve the LCP(q + CkukBk) where

y -1A T 0 A D- F T

1 1

k kk1T 1iT -1 Ti kkBk D A 1A2D A A2 D F C M B

z F-1T 0 FD- FT

and let

k+1

k+ k+
2 2

1
k+

z

be a solution;

-26-
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1 1 1
k+- k+- k+

(ii) Solve the LCP(q + C u , B where

A -I T AD'iAT A2D-1IT

AD A AD AA

1 1 1 2 1

k+ 1 k+ k+

2 Y

B 2 0 A D-IA TA D-IF T C 2 M-B 2
2 2 2

0 FD A FD F2

and let

-k+ 1
y1

k+l k+1

k+ 1
2

be a solution.

F1

kk+1 uk

observe that in step (i) above, the subvector y 2  is actually useless

for all subsequent computations, thus it can be ignored. Moreover,

I
k+1 2 iI ;k

(Y1  ,z )is a solution to the LCP(q, ) where

q (:f (i) D1( - 2 2 ) and 1) D (:) (AIF

The latter LCP in clearly equivalent to the subprogram (16),. Similarly, step

(ii) is equivalent to the subprogram (16)2 an h ubetri

can be ignored in the computations.
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To summarize the above discussion, we conclude that the Lagrangian

relaxation algorithm can be interpreted as a special realization of our basic

k kiterative scheme for solving the LCP in which the splitting (B ,C ) is

changing from one iteration to another in a cyclic order. With this

interpretation on hand, we can now state and prove our convergence result for

the Lagrangian method under no constraint qualification on the original

program (14).

Theorem 5.1. Let D be a symmetric positive definite matrix. Suppose that

each of the subprograms (16) is feasible. Let x(; ' ) denote the unique

optimum solution of (16) where
yk,a = k+ k+1 k k

1 a-a YN

Then the following two statements are equivalenti

0 0
(I) For any y = (y ) > 0, the sequence )} converges to the uniqueQ =x

global minimizer of the program (14);

(J) The program (14) is feasible, or equivalently, solvable.

Proof. It suffices to show (J) =-> (I). Suppose that (14) has an optimum

solution x which must necessarily be unique. Let {x(y ' )) be the
0 O)0

sequence generated by some initial vector y 0 (y > 0. We sketch the proof

~k,athat (x(y )Ik + x* for the case N - 2. The argument for an arbitrary N

is similar. According to the matrix-splitting interpretation of the

Lagrangian relaxation method, we see that the vector yk+ is obtained from

k+ k+ ,k*

y by solving two LCP's, namely (q + Ckuk,B k ) and (q + C u oB k

The proof that (x( )k,al converges to x is essentially the same as that

of Corollary 4.1 which is a consequence of Theorem 3.1. However, a key

requirement, namely, that {u - u k  + 0 in the proof of the implication

(B) -=> (D) in Theorem 3.1 is not guaranteed in the present situation. This

k+ ba k+ -
k k 2 2

is because the splittings (B ,C )and (s ,C )are not necessarily
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regular. In fact, it can easily be shown that the matrices Bk - Ck and
I I

k+ k+1

B - C are positive semi-definite but need not be positive definite.

A closer look at the proof of (B) -> (D) in Theorem 3.1 reveals that if

1 1 1
k+ 2 k+ -2 k+ 

Ck(u 2 -u k ) + 0 and C 2u k+1+O (19)

kthen the conclusion that the sequence (Mu ) (and also the sequence

+

(Mu 2)) converges to some Mu where u solves the LCP(q,M) remains

valid. Thus, if (19) holds, the convergence of (x(y )) to x follows as

in Corollary 4.1. The proof that (19) holds resembles that of

{xk + 1 - x k I 0 in Theorem 3.1 and is not repeated here.

Toward the end of the report (Ref. 13), Cottle and Duvall presented some

computational experience to support the superiority of a modified version of

the above Lagrangian method. This modified version involves the relaxation of

k+1
each iterate yk as in a block SOR method. At present time, we are not

able to prove the convergence of this modified method. The main difficulty is

that we can not prove the key descent property (cf. Lemma 2.1) when the

k+ 1
iterates y are overrelaxed. This difficulty can be partially explained

by considering the matrix-splitting interpretation of the Lagrangian method.
k+1 k+l

Consider the case N = 2. The vectors y 1  and y2  appear as subvectors

k+I2+ k+1 k+1 k+2

in u and u . By overrelaxing only y 1  and y2  and not the
1

2 k+1entire vectors u and u it is not clear whether the quadratic

function

T 1 T
O(u) - q u + - u Mu

where q and M are given in (18) will have the desired descent property.

After all, this descent property has played such an indispensable role in all

the convergence results obtained here.
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6. ON GRADIENT-TYPE METHODS

In the previous two sections, we have studied the convergence of three

iterative approaches for solving a strictly convex quadratic program. All

three approaches are based on a dual formulation of the original program.

There is a fourth approach which is also based on a dual formulation and which

makes use of a gradient-type method for unconstrained optimization. This

latter approach was proposed by Ha (Ref. 14) for solving structured, large-

scale quadratic programs. To describe Ha's approach, consider the quadratic

program
1 T T

minimize _ x Dx + c x subject to Ax = b and x e X (20)
2

where D is a symmetric positive definite matrix and X is a polyhedral

set. (In the case where D is positive semi-definite, Ha has proposed the

use of the proximal point algorithm (Ref. 15) to strongly convexify the

objective function. Much more detailed discussions on how the proximal point

algorithm can be used as a decomposition method for solving large-scale

structured convex programs can be found in Ha's Ph.D. dissertation (Ref.

16).) The dual of (20) may be stated as

maximize d(y) : y unrestricted (21)

where d(y) is as given by (15a). If the set X is nonempty, then the dual

function is finite, concave and differentiable for all y. However, d(y) is

typically not strongly concave. The gradient of d(y) is given by

Vd(y) = b - Ax(y) (22)

where x(y) is the unique global minimizer of the Lagrangian function

L(x,y) = - xT Dx + cTx + yT (b-Ax)
2

over x e X.
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Problem (21) is an unconstrained maximization program with a concave

everywhere differentiable objective function. (The unrestrictedness of the y-

variables is due to the equality constraints Ax - b. In general, given a

strictly convex quadratic program such as (14) where there are inequality

constraints, the process of converting such inequality constraints to equality

constraints by adding or subtracting slack variables will destroy the strict

(equivalent to strong in the quadratic case) convexity of the objective

function thus a strong convexification procedure might be necessary in such a

case.) Ha (Ref. 14) proposed the use of a gradient-type method for

unconstrained optimization to solve (21). A point of concern here is the

boundedness of the sequence generated. Typically, such a boundedness

conclusion follows as an immediate consequence of a boundedness assumption on

the level sets of the function to be optimized. In the case of problem (21),

we have the following characterization.

Proposition 6.1. Let D be a symmetric positive definite matrix and let X

be a nonempty polyhedral set. Then the dual function d(y) defined in (15a)

has bounded level sets if and only if there exists a neighborhood U of b

such that the system

Ax = b'

has a solution in X for all b' e u. In particular, if d(y) has bounded

level sets, then A must have linearly independent rows.

Proof. According to Corollary 14.2.2 in Ref. 8, the function d(y) has
* *

bounded level sets if and only if 0 e int(dom d ) where dom d denotes the

effective domain of the conjugate function d of d. By an easy

manipulation, it can be shown that

doa d = [z the system Ax = b - z, x e X is consistent}

Thus 0 e int(dom d ) if and only if there exists a neighborhood N of the
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origin such that for all vectors z e N the system Ax - b - z has a

solution x e X. By taking U = b + N, we deduce the desired characteriza-

tion. To show the last statement, suppose that d(y) has bounded level sets

but there exists a nonzero vector u such that uTA = 0. Choose a vector

v so that uTv # 0 and b ± v e U. Then there exist vectors x and x' in

in X with

Ax = b + v and Ax' = b - v

TPre-multiplying the two expressions by u and subtracting, we deduce

uTv = 0 which is a contradiction. Therefore, the matrix A must have

linearly independent rows.

From the above Proposition, we see that the boundedness of the level sets

of the dual function d(y) implies a kind of stability property on the

constraint system of the program (20). The following theorem shows that

regardless of whether this stability property holds, a sequence of primal

vectors (x(yk ) induced by a sequence {ykI which is generated by a broad

class of gradient-type methods applied to the dual program (21) will always

converge to unique global minimizer of (20), provided that the minimizer

exists and that X is either a polyhedral cone or a bounded polyhedral set.

Theorem 6.1. Let D be a symmetric positive definite matrix and let X be

either a polyhedral cone or a bounded polyhedral set. Let y k) be a

sequence of dual variables which induces a sequence of primal variables

IcI{x(y )) where

1T T Tx(y) = arg min 2 xDx + c x + y (b-Ax)
xeX

Then the following two statements are equivalent:

(yk
(K) The sequence (x(y )I converges to the unique global minimizer x of

(20);

(L) The sequence [Vd(y ) converges to zero.
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Theorem 6.1 has captured the essence of the convergence results in

Corollaries 4.1 and 4.2 and Theorem 5.1 by giving a necessary and sufficient

condition on the dual sequence y kI in order for the corresponding primal

sequence (x(y )} to converge to the unique solution of (20). To prove

Theorem 6.1, we need the following lemma which summarizes several important

properties of x(y) considered as a function of y.

Lemma 6.1. Let D be a symmetric positive matrix of order n and let X be

nonempty convex polyhedral set in Rn . Define x n + Rn by

(q) = arg min 2 x x + qTx

xex

Then

i) x (e) is a well-defined Lipschitz continuous function of q, and

there exists a positive constant K such that

Ix *( Xq 2 )2 < -K(qq 2 )T(x (q1 )-x* q2 )) for all ql1 q
2 . (23)

In particular, if {x*(qk)} and {x*(pk ) are two sequences such that
qk -pk + 0, then x*(q k) - x*(p k ) + .

(ii) If Q is convex polyhedral set, then the image x (Q) is closed. In

particular, if (x*(q k)} is a converging sequence with {q = Q, then there

* k
exists a vector q e Q such that x (q + x (q).

(iii) If X is a polyhedral cone, then

x (aq) - ax (q) for all a > 0 . (24)
*R

Proof. i) The well-definedness of x (1 is clear. To show (23), we note

that

(x-x (q)) T(Dx*(q)+q) 0 for all x e X (25)

by the variational inequality characterization of x (q). Thus, it follows

that

(x*Cq )-x*q 2))T (Dx *(q 2)+q 2 ) a 0 and (x*(q 2)-x*(q )) T(Dx*(q )+q1 ) 1 0

Adding the two inequalities gives
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(x*(ql)-x*(q2)) D(x (q )-x*(q 2)) -(q -q2)T(x*(q )-x*(q 2))

By taking K to be the reciprocal of the smallest eigenvalue of D, we

obtain (23). From (23), we deduce
* 1 * 2 1.21

Ix (q )-x (q )I2 ! Kq for all q ,q

which establishes the Lipschitz continuity of x (q) as well as the last

conclusion of (i).

(ii) If Q is a convex polyhedral set, then x (Q) is the union of a

finite number of polyhedral sets (see Ref. 17) and is therefore closed. The

assertion about the sequence {x (qk ) is immediate.

(iii) Obviously, (24) holds for a = 0. Let a > 0. Multiplying (25) by the

2
scalar a , we obtain

(ax - ax (q)) (D(ax*(q)) + aq) > 0 for all x e X
*

Since X is a cone, aX = X, thus by the uniqueness of x (aq), we conclude

that (24) holds.

Proof of Theorem 6.1. (K) ==> (L). By (22), we have

Vd(yk ) = b - Ax(y k ) b - Ax 0

because x solves (20).

(L) ==> (K). We first prove that the sequence {;(yk), is bounded. This is

certainly true if the set X is bounded. So, let X be a polyhedral cone.

Suppose that ({,(y )1 is unbounded. Then 1;(y k)I + . The normalized

sequence {x(y k)/Ix(yk)U1 has an accumulation point which must be nonzero.

Let u be one such point and with no loss of generality, we may assume that

x(y )/Ix(yk)l + u. Since Vd(yk ) = b - Ax(yk ) + 0, we deduce Au - 0. By

Lemma 6.1 (iii), we may write

-k T Tk
x(yk x I(c-Ayk) x ((c-A Tyk)/(yk)I)
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By Lemma 6.1(i), the sequence {x (-ATY /Ex(yk)I) + u. Since AT (Rn ) is a

convex polyhedral set, Lemma 6.1(11) implies the existence of a vector y
* T; * TA 1 T^

such that u - x (A ). Hence Ax (A Y) - 0. By letting q - A y and

q = 0, we deduce from (23) that u W x (A y) = 0 which is a contradiction.

k)
Consequently, the sequence (y )) is bounded. Let x be any accumulation

ka

point of {y )). By Lemma 6.1(11) again, there exists a vector y such

a ak - k
that x = x(y). Obviously x e x. Since Vd(y b - Ax y 0, it

A

follows that b - Ax - 0. Thus the vector x is feasible to (20). Moreover#

we have

2 xDx + c x i XDx + c x + y(b-Ax) - d(y)22
aaI T T T *because x- arg mi 2 x Dx + c x + y (b-Ax). Therefore x solves the

xex

primal program (20). But since (20) has a unique minimizer, say x , the

(k
sequence {x(y )I must converge to x • This completes the proof of the

theorem.

We should point out that condition (L) holds for a large class of

gradient-type ascent methods which include many best-known quasi-Newton

methods with suitably chosen steplength rules, see Refs. 18 and 19 e.g.

According to Theorem 6.1, these gradient methods will all produce a primal

sequence converging to the unique solution of the original program (20).

- k
Typically, the primal sequence {x(y )) is generated while the dual sequence

(yk I is being computed.

Basically, the proof of Theorem 6.1 shows that assertion (L) ==> (K)

requires no particular assumption on the set X. On the other hand, the

reverse implication (K) -> (L) requires that X be either a cone or

bounded. At present time, we cannot prove (K) --> (L) without such

assumption on X. We leave this as an open conjecture and encourage the

readers to prove or disprove it.
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